Endocrine disruptors induce cytochrome P450 by affecting transcriptional regulation via pregnane X receptor.
نویسندگان
چکیده
Pregnane X receptor (PXR) is a nuclear receptor that regulates the expression of genes for cytochrome P450 3A (CYP3A), multidrug resistance 1 (MDR1), and organic anion-transporting peptide 2 (OATP2). These genes control the metabolism (CYP3A subfamily) and aspects of the pharmacokinetics (MDR1 and OATP2) of both endogenous and xenobiotic compounds. Since PXR is important in understanding the actions of endocrine disruptors (EDs), we determined the ability of suspected EDs to interact with PXR. In our study, 7 of 54 xenobiotics compounds interacted with PXR, including methoxychlor and benzophenone. All of the chemicals activated PXR in vitro and induced CYP3A mRNA in the male rat liver. In addition, CYP2C11 was also induced by some PXR agonists and converted methoxychlor into xenoestrogen. These findings suggest that some EDs affect sex hormone receptor indirectly by induction of metabolic enzyme via PXR, to produce rapidly higher concentrations of effective metabolites, leading to disturbance of the endocrine system.
منابع مشابه
Clinical correlates in drug-herbal interactions mediated via nuclear receptor PXR activation and cytochrome P450 induction
Pregnane and Xenobiotic Receptor (PXR), a vital xenosensor, acts as master regulator of phase-I (cytochrome P450) and phase-II enzymes (glutathione S-transferases, sulfotransferases, and uridine 5’-diphosphate glucuronosyltransferases) as well as several drug transporters (multi-drug resistance protein, and multidrug resistance-associated protein). PXR can bind to a variety of chemically distin...
متن کاملPost-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4.
Pregnane X receptor (PXR) is a major transcription factor regulating the inducible expression of a variety of transporters and drug-metabolizing enzymes, including CYP3A4 (cytochrome P450 3A4). We first found that the PXR mRNA level was not correlated with the PXR protein level in a panel of 25 human livers, indicating the involvement of post-transcriptional regulation. Notably, a potential miR...
متن کاملHuman CYP2C8 is transcriptionally regulated by the nuclear receptors constitutive androstane receptor, pregnane X receptor, glucocorticoid receptor, and hepatic nuclear factor 4alpha.
Cytochrome P450 (P450) enzymes play important roles in the metabolism of endogenous and xenobiotic substrates in humans. CYP2C8 is an important member of the CYP2C subfamily, which metabolizes both endogenous compounds (i.e., arachidonic acids and retinoic acid) and xenobiotics (e.g., paclitaxel). Induction of P450 enzymes by drugs can result in tolerance as well as drug-drug interactions. CYP2...
متن کاملCamptothecin attenuates cytochrome P450 3A4 induction by blocking the activation of human pregnane X receptor.
Differential regulation of drug-metabolizing enzymes (DMEs) is a common cause of adverse drug effects in cancer therapy. Due to the extremely important role of cytochrome P450 3A4 (CYP3A4) in drug metabolism and the dominant regulation of human pregnane X receptor (hPXR) on CYP3A4, finding inhibitors for hPXR could provide a unique tool to control drug efficacies in cancer therapy. Camptothecin...
متن کاملRegulation of the human CYP2B6 gene by the nuclear pregnane X receptor.
Cytochromes P450 (P450s) are involved in the oxidative metabolism of a plethora of structurally unrelated compounds, including therapeutic drugs. Two orphan members of the nuclear receptor superfamily, the pregnane X receptor (PXR; NR1I2) and constitutive androstane receptor (CAR; NR1I3) have been implicated in this phenomenon. In the present study, we examined the transcriptional regulation of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicology and applied pharmacology
دوره 193 1 شماره
صفحات -
تاریخ انتشار 2003